
Figure 3-1. The MoleMash user
interface

CHAPTER 3

MoleMash

This chapter shows you how to create
MoleMash, a game inspired by the arcade classic
Whac-A-Mole™, in which mechanical critters pop
out of holes, and players score points when they
successfully whack them with a mallet. MoleMash
was created by a member of the App Inventor
team, ostensibly to test the sprite functionality
(which she implemented), but really because she’s a
fan of the game.

When Ellen Spertus joined the App Inventor team at Google, she was eager to add
support for creating games, so she volunteered to implement sprites. The term, originally
coined to describe mythological creatures such as fairies and pixies, was adopted by the
computing community in the 1970s to refer to images capable of movement on a
computer screen (for video games). Ellen first worked with sprites when she attended a
computer camp in the early 1980s and programmed a TI 99/4. Her work on sprites and
MoleMash was motivated by double nostalgia—for both the computers and games of her
childhood.

What You’ll Build
For the MoleMash app shown in Figure 3-1, you’ll
implement the following functionality:

• A mole pops up at random locations on the
screen, moving once every second.

• Tapping the mole causes the device to vibrate,
increment a display of “hits” (increasing it by
one), and move the mole immediately to a new
location.

• Tapping the screen but missing the mole increments a display of “misses.”

• Pressing a Reset button resets the counts of hits and misses.

What You’ll Learn
The tutorial covers the following components and concepts:

• The ImageSprite component for touch-sensitive movable images.

• The Canvas component, which acts as a surface on which to place the
ImageSprite.

• The Clock component to move the sprite around once every second.

• The Sound component to produce a vibration when the mole is tapped.

• The Button component to start a new game.

• Procedures to implement repeated behavior, such as moving the mole.

• Generating random numbers.

• Using the addition (+) and subtraction (–) blocks.

Getting Started
Connect to the App Inventor website and start a new project. Name it “MoleMash”
and also set the screen’s title to “MoleMash”. Click Connect and connect your device or
emulator for live testing.

Download the picture of a mole from http://appinventor.org/bookFiles/MoleMash/
mole.png. In the Component Designer, in the Media section, click “Upload File,”
browse to where the file is located on your computer, and then upload it to App
Inventor.

Designing the Components
You’ll use these components to make MoleMash:

• A Canvas that serves as a playing field.

• An ImageSprite that displays a picture of a mole and can move around and
sense when the mole is touched.

• A Sound that vibrates when the mole is touched.

• Labels that display “Hits: “, “Misses: “, and the actual numbers of hits and
misses.

• HorizontalArrangements to correctly position the Labels.

• A Button to reset the numbers of hits and misses to 0.

44 Chapter 3: MoleMash

Chapter 3, MoleMash

http://appinventor.org/bookFiles/MoleMash/mole.png
http://appinventor.org/bookFiles/MoleMash/mole.png

• A Clock to make the mole move once per second.

Table 3-1 shows all of the components you’ll be using.

Table 3-1. The complete list of components for MoleMash

Component type Palette group What you’ll name it Purpose

Canvas
Drawing and
Animation Canvas1 The container for ImageSprite.

ImageSprite
Drawing and
Animation Mole The user will try to touch this.

Button User Interface ResetButton
The user will press this to reset the
score.

Clock User Interface Clock1 Control the mole’s movement.

Sound Media Sound1 Vibrate when the mole is touched.

Label User Interface HitsLabel Display “Hits: ”.

Label User Interface HitsCountLabel Display the number of hits.

HorizontalArrangement Layout Horizontal
Arrangement1

Position HitsLabel next to
HitsCountLabel.

Label User Interface MissesLabel Display “Misses: ”.

Label User Interface MissesCountLabel Display the number of misses.

HorizontalArrangement Layout Horizontal
Arrangement2

Position MissesLabel next to
MissesCountLabel.

PLACING THE ACTION COMPONENTS

In this section, you will place the components necessary for the game’s action. In the
next section, you will place the components for displaying the score.

1. From the Drawing and Animation drawer, drag in a Canvas component, leaving
it with the default name Canvas1. Set its Width property to “Fill parent” so that it
is as wide as the screen, and set its Height to 300 pixels.

2. Again from the Drawing and Animation drawer, drag in an ImageSprite
component, placing it anywhere on Canvas1. At the bottom of the Components
list, click Rename and change its name to “Mole”. Set its Picture property to
mole.PNG, which you uploaded earlier.

3. From the User Interface drawer, drag in a Button component, placing it
beneath Canvas1. Rename it “ResetButton” and set its Text property to “Reset”.

45Designing the Components

Designing the Components

4. Also from the User Interface drawer, drag in a Clock component. It will appear
at the bottom of the Viewer in the “Non-visible components” section.

5. From the Media drawer, drag in a Sound component. It, too, will appear in the
“Non-visible components” section.

Your screen should now look something like Figure 3-2 (although your mole might
be in a different position).

Figure 3-2. The Component Designer view of the “action” components

PLACING THE LABEL COMPONENTS

You will now place components for displaying the user’s score—specifically, the
number of hits and misses.

46 Chapter 3: MoleMash

Chapter 3, MoleMash

1. From the Layout drawer, drag in a HorizontalArrangement, placing it beneath
the Button and keeping the default name of HorizontalArrangement1.

2. From the User Interface drawer, drag two Labels into
HorizontalArrangement1.

◦ Rename the left Label “HitsLabel” and set its Text property to “Hits:
“ (making sure to include a space after the colon).

◦ Rename the right Label “HitsCountLabel” and set its Text property to the
number 0.

3. Drag in a second HorizontalArrangement, placing it beneath
HorizontalArrangement1.

4. Drag two Labels into HorizontalArrangement2.

◦ Rename the left Label “MissesLabel” and set its Text property to “Misses: ”
(making sure to include a space after the colon).

◦ Rename the right Label “MissesCountLabel” and set its Text property to
the number 0.

Your screen should now look like something like Figure 3-3.

47Designing the Components

Designing the Components

Figure 3-3. The Component Designer view of all the MoleMash components

Adding Behaviors to the Components
After creating the preceding components, let’s move to the Blocks Editor to
implement the program’s behavior. Specifically, we want the mole to move to a
random location on the canvas every second. The user’s goal is to tap on the mole
wherever it appears, and the app will display the number of times the user hits or
misses the mole. (Note: We recommend using your finger, not a mallet!) Pressing the
Reset button resets the number of hits and misses to 0.

48 Chapter 3: MoleMash

Chapter 3, MoleMash

MOVING THE MOLE

In the programs you’ve written thus far, you’ve called built-in procedures such as
Vibrate in HelloPurr. Wouldn’t it be nice if App Inventor had a procedure that moved
an ImageSprite to a random location on the screen? The bad news: it doesn’t. The
good news: you can create your own procedures! Just like the built-in procedures,
your procedure will show up in a drawer and you can use it anywhere in the app.

Specifically, we will create a procedure to move the mole to a random location on
the screen, which we will name MoveMole. We want to call MoveMole at the start of the
game, when the user successfully taps the mole, and once per second.

CREATING THE MOVEMOLE PROCEDURE

To understand how to move the mole, we need to look at how Android graphics
work.

The canvas (and the screen) can be thought of as a grid with x (horizontal) and y
(vertical) coordinates, where the (x, y) coordinates of the upper-left corner are (0, 0).
The x coordinate increases as you move to the right, and the y coordinate increases as
you move down, as shown in Figure 3-4. The x and y properties of an ImageSprite
indicate where its upper-left corner is positioned; thus, the mole in the upper-left
corner in Figure 3-4 has x and y values of 0.

To determine the maximum available x and y values so that Mole fits on the screen,
we need to make use of the Width and Height properties of Mole and Canvas1. (The
mole’s Width and Height properties are the same as the size of the image you
uploaded. When you created Canvas1, you set its Height to 300 pixels and its Width to
“Fill parent,” which copies the width of its parent element, which in this case is the
screen.) If the mole is 36 pixels wide and the canvas is 200 pixels wide, the x
coordinate of the left side of the mole can be as low as 0 (all the way to the left) or as
high as 164 (200 – 36, or Canvas1.Width – Mole.Width) without the mole extending off
the right edge of the screen. Similarly, the y coordinate of the top of the mole can
range from 0 to Canvas1.Height – Mole.Height.

Figure 3-5 shows the procedure you will create, annotated with descriptive
comments (which you can optionally add to your procedure).

To randomly place the mole, we will want to select an x coordinate in the range
from 0 to Canvas1.Width – Mole.Width. Similarly, we will want the y coordinate to be in
the range from 0 to Canvas1.Height – Mole.Height. We can generate a random number
through the built-in procedure random integer, which you can find in the Math
drawer. You will need to change the default “from” parameter from 1 to 0 and replace
the “to” parameters, as shown in Figure 3-5.

49Adding Behaviors to the Components

Adding Behaviors to the Components

Figure 3-4. Positions of the mole on the screen, with coordinate, height, and width
information; x coordinates and widths are shown in blue, while y coordinates and
heights are in orange

Figure 3-5. The MoveMole procedure, which places the mole in a random location

To create the procedure:

1. In the Blocks Editor, click the Procedure drawer.

2. Drag out the to procedure block (containing “do,” not “result”).

3. On the new block, click the text “procedure” and type “MoveMole” to set the
name of the procedure.

50 Chapter 3: MoleMash

Chapter 3, MoleMash

4. Because we want to move the mole, click the Mole drawer, and drag call
Mole.MoveTo into the procedure, to the right of “do.” Note the open sockets on
the right side which indicate that we need to provide x and y coordinates.

5. To specify that the new x coordinate for the mole should be between 0 and
Canvas1.Width – Mole.Width, as discussed earlier, do the following:
◦ From the Math drawer, drag in the random integer from block, putting

the plug (protrusion) on its left side into the “x” socket on call
Mole.MoveTo.

◦ Change the number “1” block on the “from” socket by clicking it and then
entering the number “0”.

◦ Discard the number “100” by clicking it and pressing your keyboard’s Del
or Delete key, or by dragging it to the trash can.

◦ From the Math drawer, drag in a subtraction (–) block and place it into
the “to” socket.

◦ From the Canvas1 drawer, select the Canvas1.Width block and drag it to
the left side of the subtraction operations.

◦ Similarly, click the Mole drawer and drag Mole.Width into the workspace.
Then, plug that into the right side of the subtraction block.

6. Follow a similar procedure to specify that the y coordinate should be a random
integer in the range from 0 to Canvas1.Height – Mole.Height.

7. Check your results against Figure 3-5.

CALLING MOVEMOLE WHEN THE APP STARTS

Now that you’ve written the MoveMole procedure, let’s make use of it. Because it’s so
common for programmers to want something to happen when an app starts, there’s a
block for that very purpose: Screen1.Initialize.

1. Click the Screen1 drawer and drag out Screen1.Initialize.

2. Click the Procedures drawer, in which you’ll see a call MoveMole block. (It’s
pretty cool that you’ve created a new block, isn’t it?!) Drag it out and place it in
Screen1.Initialize, as shown in Figure 3-6.

51Adding Behaviors to the Components

Adding Behaviors to the Components

Figure 3-6. Calling the MoveMole procedure when the application starts

CALLING MOVEMOLE EVERY SECOND

Making the mole move every second will require the Clock component. We left the
TimerInterval property for Clock1 at its default value of 1,000 (milliseconds), or 1
second. That means that every second, whatever is specified in a Clock1.Timer block
will take place. Here’s how to set that up:

1. Click the Clock1 drawer and drag out Clock1.Timer.

2. Click the Procedures drawer and drag a call MoveMole block into the
Clock1.Timer block, as shown in Figure 3-7.

Figure 3-7. Calling the MoveMole procedure when the timer goes off (every second)

If that’s too fast or slow for you, you can change the TimerInterval property for
Clock1 in the Component Designer to make it move more or less frequently.

KEEPING SCORE

 As you might recall, you created two labels, HitsCountsLabel and MissesCountsLabel,
which had initial values of 0. We’d like to increment the numbers in these labels
whenever the user successfully taps the mole (a hit) or taps the screen without
touching the mole (a miss). To do so, we will use the Canvas1.Touched block, which
indicates that the canvas was touched, the x and y coordinates of where it was
contacted (which we don’t need to know), and whether a sprite was tapped (which
we do need to know). Figure 3-8 shows the code you will create.

52 Chapter 3: MoleMash

Chapter 3, MoleMash

Figure 3-8. Incrementing the number of hits (HitsCountLabel) or misses
(MissesCountLabel) when Canvas1 is touched

You can translate the blocks in Figure 3-8 in the following way: whenever the
canvas is tapped, check whether a sprite was tapped. Because there’s only one sprite
in our program, it has to be Mole1. If Mole1 is tapped, add one to the number in
HitsCountLabel.Text; otherwise, add one to MissesCountLabel.Text. (The value of
touchedSprite is false if no sprite was touched.)

Here’s how to create the blocks:

1. Click the Canvas1 drawer and drag out Canvas1.Touched.

2. Click the Control drawer and drag out the if-then block. Click its blue icon
and add an else branch. Then, place it within Canvas1.Touched.

3. Mouse over the touchedSprite event parameter on Canvas1.Touched, and then
drag out the get touchedSprite block and place it in the test socket of if-then-
else.

4. Because we want HitsCountLabel.Text to be incremented if the test succeeded
(if the mole was touched), do the following:
◦ From the HitsCountLabel drawer, drag out the set HitsCountLabel.Text

to block, putting it to the right of “then.”

◦ Click the Math drawer and drag out a plus sign (+), placing it in the “to”
socket.

◦ Click the HitsCountLabel drawer and drag the HitsCountLabel.Text
block to the left of the plus sign.

◦ Click the Math drawer and drag a 0 block to the right of the plus sign.
Click 0 and change it to 1.

5. Repeat step 4 for MissesCountLabel in the else section of the ifelse block.

53Adding Behaviors to the Components

Adding Behaviors to the Components

Test your app You can test this new code on your device by
tapping the canvas, both on and off the mole, and watching
the score change.

PROCEDURAL ABSTRACTION

The ability to name and later call a set of instructions like MoveMole is one of the key
tools in computer science and is referred to as procedural abstraction. It is called
“abstraction” because the caller of the procedure (who, in real-world projects, is likely
to be different from the author of the procedure) only needs to know what the
procedure does (moves the mole), not how it does it (by making two calls to the
random-number generator). Without procedural abstraction, big computer programs
would not be possible, because they contain too much code for individuals to hold in
their head at a time. This is analogous to the division of labor in the real world, where,
for example, different engineers design different parts of a car, none of them
understanding all of the details, and the driver only has to understand the interface
(e.g., pressing the brake pedal to stop the car), not the implementation.

54 Chapter 3: MoleMash

Chapter 3, MoleMash

Some advantages of procedural abstraction over copying and pasting code are:

• It is easier to test code if it is neatly segregated from the rest of the program.

• If there’s a mistake in the code, it only needs to be fixed in one place.

• To change the implementation, such as ensuring that the mole doesn’t move
somewhere that it appeared recently, you only need to modify the code in one
place.

• Procedures can be collected into a library and used in different programs.
(Unfortunately, this functionality is not currently supported in App Inventor.)

• Breaking code into pieces helps you think about and implement the application
(“divide and conquer”).

• Choosing good names for procedures helps document the code, making it
easier for someone else (or you, a month later) to read.

In later chapters, you will learn ways of making procedures even more powerful:
adding arguments, providing return values, and having procedures call themselves.
For an overview, see Chapter 21.

RESETTING THE SCORE

A friend who sees you playing MoleMash will probably want to give it a try, too, so it’s
good to have a way to reset the number of hits and misses to 0. Depending on which
tutorials you’ve already worked through, you might be able to figure out how to do
this without reading the following instructions. Consider giving it a try before reading
ahead.

What we need is a ResetButton.Click block that sets the values of
HitsCountLabel.Text and MissesCountLabel.Text to 0. Create the blocks shown in
Figure 3-9.

Figure 3-9. Resetting the number of hits (HitsCountLabel) and misses
(MissesCountLabel) when the Reset button is pressed

At this point, you probably don’t need step-by-step instructions for creating a
button click event handler with text labels, but here’s a tip to help speed up the
process: instead of getting your number from the Math drawer, just type 0, and the

55Adding Behaviors to the Components

Adding Behaviors to the Components

block should be created for you. (These kinds of keyboard shortcuts exist for other
blocks, too.)

Test your app Try hitting and missing the mole and then
pressing the Reset button.

VIBRATING WHEN THE MOLE IS TOUCHED

We said earlier that we want the device to vibrate when the user taps the mole, which
we can do with the Sound1.Vibrate block, as shown in Figure 3-10.

Figure 3-10. Making the device vibrate briefly (for 100 milliseconds) when the mole is
touched

Test your app See how the vibration works when you
actually tap the mole. If the vibration is too long or too
short for your taste, change the number of milliseconds in
Sound1.Vibrate block.

The Complete App: MoleMash
Figure 3-11 illustrates the blocks for the complete MoleMash app.

56 Chapter 3: MoleMash

Chapter 3, MoleMash

Figure 3-11. The complete MoleMash application

Variations
Here are some ideas for additions to MoleMash:

• Add buttons to let the user make the mole move faster or slower.

• Add a label to keep track of and display the number of times the mole has
appeared (moved).

• Add a second ImageSprite with a picture of something that the user should not
hit, such as a flower. If the user touches it, penalize him by reducing his score or
ending the game.

• Instead of using a picture of a mole, let the user select a picture with the
ImagePicker component.

Summary
In this chapter, we covered a number of techniques that are useful for apps in general
and games in particular:

• The Canvas component makes use of an x-y coordinate system, where x
represents the horizontal direction (from 0 at the left to Canvas.Width–1 at the
right), and y the vertical direction (from 0 at the top to Canvas.Height–1 at the
bottom). The height and width of an ImageSprite can be subtracted from the
height and width of a Canvas to make sure the sprite fits entirely on the Canvas.

57Variations

Variations

• You can take advantage of the device’s touchscreen through the Canvas and
ImageSprite components’ Touched methods.

• You can create real-time applications that react not just to user input but also in
response to the device’s internal timer. Specifically, the Clock.Timer block runs
at the frequency specified in the Clock.Interval property and can be used to
move ImageSprite (or other) components.

• You can use labels to display scores, which go up (or down) in response to the
player’s actions.

• You can provide tactile feedback to users through the Sound.Vibrate method,
which makes the device vibrate for the specified number of milliseconds.

• Instead of just using the built-in methods, you can create procedures to name a
set of blocks that can be called just like the built-in ones. This is called
procedural abstraction and is a key concept in computer science, enabling code
reuse and making complex applications possible.

• You can generate unpredictable behavior with the random integer block (in the
Math drawer), making a game different every time it is played.

You’ll learn more techniques for games, including detecting collisions between
moving ImageSprite components, in Chapter 5.

58 Chapter 3: MoleMash

Chapter 3, MoleMash

	MoleMash
	What You’ll Build
	What You’ll Learn
	Getting Started
	Designing the Components
	Adding Behaviors to the Components
	The Complete App: MoleMash
	Variations
	Summary

