
Figure 24-1.

CHAPTER 24

Communicating with the Web

Mobile technology and the ubiquitous nature of
the Web have changed the world we live in. You can
now sit in the park and do your banking, search
Amazon.com to find reviews of the book you’re
reading, and check Twitter to see what people in
every other park in the world are thinking about.
Mobile phones have moved well past just calling
and texting—now, you have instant access to the
world’s data, too.

You can use your phone’s browser to reach the
Web, but often the small screen and limited speed
of a mobile device can make this problematic.
Custom apps, specially designed to pull in small chunks of particularly suitable
information from the Web, can provide a more attractive alternative to the mobile
browser.

In this chapter, we’ll take a look at App Inventor components that access information
from the Web. You’ll learn how to show a web page within the user interface of your app,
and you’ll learn about APIs and how to access information from a web service.

Creativity is about remixing the world, combining (mashing) existing ideas and
content in interesting new ways. Eminem is among many artists over the past few
decades who popularized the music mashup when he set his Slim Shady vocal over
AC/DC and Vanilla Ice tracks. This kind of “sampling” is now common, and numerous
artists, including Girl Talk and Negativland, focus primarily on creating new tracks
from mashing together old content.

The web and mobile world are no different: websites and apps remix content from
various data sources, and most sites are now designed with such interoperability in
mind. An illustrative example of a web mashup is Housing Maps, pictured in
Figure 24-1, which takes apartment rental information from Craigslist and mashes it
with the Google Maps API.

http://www.housingmaps.com
http://www.craigslist.org

Figure 24-2. Housing Maps mashes information from Craigslist and Google Maps

Mashups akin to Housing Maps are possible because services such as Google Maps
provide both a website and a corresponding web service API. We humans visit http://
maps.google.com/ in a browser, but apps such as Housing Maps communicate
machine to machine with the Google Maps API. Mashups process the data, combine it
with data from other sites (e.g., Craigslist), and then present it in new and interesting
ways.

Just about every popular website now provides this alternative, machine-to-
machine access. The program providing the data is called a web service, and the
protocol for how a client app should communicate with the service is called an
application programmer interface, or API. In practice, the term API is used to refer to
the web service, as well.

The Amazon Web Service (AWS) was one of the first web services, as Amazon
realized that opening its data for use by third-party entities would eventually lead to
more books being sold. When Facebook launched its API in 2007, many people raised
their eyebrows. Facebook’s data isn’t book advertisements, so why should it let other
apps “steal” that data and potentially draw many users away from the Facebook site
(and its advertisements!)? Yet, its openness led Facebook toward becoming a platform
instead of just a site—meaning that other programs could build on and tap into
Facebook’s functionality, and no one can argue with its success today. By the time
Twitter launched in 2009, API access was an expectation, not a novelty, and Twitter
acted accordingly. Now, as shown in Figure 24-2, most websites offer both an API and
a human interface.

362 Chapter 24: Communicating with the Web

Chapter 24, Communicating with the Web

http://maps.google.com/
http://maps.google.com/

Figure 24-3. Most websites provide both a human interface and an API for client apps

Thus, the Web is one thing to us average humans (a collection of sites to visit). To
programmers, it is the world’s largest and most diverse database of information.

The WebViewer Component
The WebViewer component lets you show a web page within your app. You can show a
Google Maps page showing the user’s current location, a twitter page showing the
most recent trending topics related to your app, or a page from nba.com showing the
statistics for your favorite players.

WebViewer (see Figure 24-3) is like the Canvas component in that it defines a
subpanel of the screen. But whereas Canvas is used for drawings and animations,
WebViewer shows a web page.

363The WebViewer Component

The WebViewer Component

Figure 24-4. The WebViewer as it appears in Designer.

You can drag in a WebViewer from the User Interface drawer. You can then
dynamically change the URL that appears, as in Figure 24-4, which depicts blocks from
an app that shows the stats of NBA players Lebron James and Stephen Curry:

364 Chapter 24: Communicating with the Web

Chapter 24, Communicating with the Web

Figure 24-5. Blocks to show the web page for the chosen players

If the user taps the picture of Stephen Curry, the app would show his page from
nba.com in the WebViewer, as in Figure 24-5.

365The WebViewer Component

The WebViewer Component

Figure 24-6. WebViewer in the app

The Web Component
Whereas WebViewer displays a web page, the Web component, a relatively new
component in App Inventor, facilitates an app communicating with a web service via
the standard Hypertext Transfer Protocol (HTTP). That protocol provides Get, Put, and

366 Chapter 24: Communicating with the Web

Chapter 24, Communicating with the Web

Post methods for bringing information into your app. The information arrives not as a
displayable page, but as data that you can display or process as you like.

The component is fairly low level, and using it requires some programming
expertise. You typically set the Web.URL property to specify which web service you will
communicate with, and then you call one of the HTTP methods to request some
action. It’s complicated because you need to understand the API of the web service
(the protocol for communication), and you need to understand how to process the
information that the web service returns to your app. This processing is known as
parsing, and it is an advanced programming technique.

In this chapter, you’ll be introduced to the Web component through a relatively
simple example that accesses financial stock price information from a public API
made available by Yahoo Finance. The protocol for talking to this API is fairly simple,
and the data returned is in a list of values separated by commas (comma-separated
values, or CSV), so it serves as a nice introduction to API communication.
Unfortunately, most APIs have complicated permission schemes and APIs, and they
often return data in formats such as JavaScript Object Notation (JSON) or XML, which
require some advanced code to parse.

STOCK MARKET SAMPLE

Figure 24-6 shows the blocks for an app that displays Google stock information when
the app launches.

Figure 24-7. Accessing live stock information via the Web component

On Screen.Initialize, Web1.Url is set to the URL for communicating with Yahoo
Finance. When Web1.Get is called, the request is made, but no data is returned
immediately.

Instead, when Yahoo returns the requested data to your app, the Web1.GotText
event is triggered, and this is where you can process the returned data. The event
parameter responseContent holds the data. As just mentioned, the Yahoo Finance API
returns data in CSV format. If you build this app and run it, you’ll see that the current

367The Web Component

The Web Component

Google stock price and the change in the price for the day are displayed in
StockInfoLabel, separated by commas.

You can customize the Web.Url to get the information for a different company (or
companies), and to get various types of stock market information. The Yahoo Finance
API, at https://code.google.com/p/yahoo-finance-managed/wiki/CSVAPI, specifies how
you can change the URL to customize your request, as well as the format of the data it
returns.

TinyWebDB and TinyWebDB-Compliant APIs
The Web component provides a method for accessing APIs. If an API is fairly simple,
such as Yahoo Finance, novice programmers can use the Web component to directly
access it. But other APIs, like the Amazon API introduced in Chapter 13, are more
complicated.

For complicated APIs, an experienced programmer can set up a TinyWebDB-
compliant web service that can then be used by less experienced App Inventor
programmers to access the API. When such a service is set up, other programmers can
access the web service with the simple tag-value protocol inherent in the
TinyWebDB.GetValue function. You send a particular tag as the parameter, and a list or
text object is returned as the value. In this way, the App Inventor programmer is
shielded from the difficult programming required to parse (understand and extract
data) standard data formats such as XML or JSON.

“TinyWebDB-compliant” just means a web service that follows TinyWebDB’s
expected protocol: it expects a specific request, and returns data that TinyWebDB can
understand. The Amazon API web service used in Chapter 13 is an example of such a
web service, and can be used as a sample for programmers who would like to set up
such a service (e.g., if you’re a teacher and want to provide access to some API for your
students).

In the past, building APIs was difficult because you not only needed to understand
the programming and web protocols, but you also needed to set up a server to host
your web service, and a database to store the data. Now, it’s much easier because you
can leverage cloud-computing tools such as Google’s App Engine and Amazon’s
Elastic Compute Cloud to immediately deploy the service you create. These platforms
will not only host your web service, but they’ll also let hundreds of users access it
before charging you a single dime. As you can imagine, these sites are a great boon to
innovation.

The details of creating a TinyWebDB-compliant web service are beyond the scope
of this book. But if you’re interested, check out the documentation and samples at
http://appinventorapi.com/.

368 Chapter 24: Communicating with the Web

Chapter 24, Communicating with the Web

https://code.google.com/p/yahoo-finance-managed/wiki/CSVAPI
http://appinventorapi.com/using-tinywebdb-to-talk-to-an-api/

Summary
Most websites and many mobile apps are not standalone entities; to do their jobs,
they rely on the interoperability of other sites. With App Inventor, you can build
games, quizzes, and other standalone apps, but soon enough, you’ll encounter issues
related to web access. Can I write an app that tells me when the next bus will arrive at
my usual stop? Can I write an app that texts a special subset of my Facebook friends?
Can I write an app that sends tweets? App Inventor provides three components that
can talk to the Web: the WebViewer for showing a live web page; the Web component,
for accessing information from an API; and the TinyWebDB component to access data
in a specially designed web API.

Accessing an API can be complicated; you need to know the protocol for
requesting information, and you need to process (parse) the often complex data
returned. But the reward for learning how to do this is great; your apps can interact
with the world!

369Summary

Summary

	Communicating with the Web
	The WebViewer Component
	The Web Component
	TinyWebDB and TinyWebDB-Compliant APIs
	Summary

