
Figure 17-1.

CHAPTER 17

Creating Animated Apps

This chapter discusses methods for creating
apps with simple animations (objects that move).
You’ll learn the basics of creating two-dimensional
games with App Inventor and become comfortable
with image sprites and handling events such as
two objects colliding.

When you see an object moving smoothly
along the computer screen, what you’re really
seeing is a quick succession of images with the
object in a slightly different place each time. It’s
an illusion not much different from flipbooks, in
which you see a moving picture by flipping
quickly through the pages. It’s the concept
behind how animated films are made!

With App Inventor, you’ll program animation
by placing Ball and ImageSprite components
within a Canvas component and then moving
and transforming those objects every successive fraction of a second. In this chapter,
you’ll learn how the Canvas coordinate system works, how you can use the
Clock.Timer event to trigger movement, how to control the speed of objects, and
how to respond to events such as two objects crashing into each other.

Adding a Canvas Component to Your App
From the Drawing and Animation palette, drag a Canvas component into your app.
After you place it, specify its Width and Height. Often, you’ll want the Canvas to span
the width of the device screen. To do this, choose “Fill parent” when specifying the
Width.

You can do the same for the Height, but generally you’ll set this to some number
(e.g., 300 pixels) to leave room for other components above and below the Canvas.

The Canvas Coordinate System
A drawing on a Canvas is really a grid of pixels, where a pixel is the tiniest possible dot
of color that can appear on the screen. Each pixel’s location is defined by x-y
coordinates on a grid system, as illustrated in Figure 17-1. In this coordinate system, x
defines a location on the horizontal plane (starting at 0 on the far left and increasing
as you move to the right across the screen), and y defines a location on the vertical
plane (starting at 0 at the top and increasing as you move down the screen).

Figure 17-2. The Canvas coordinate system

The top-left cell in a Canvas starts with 0 for both coordinates, so this position is
represented as (x=0,y=0). As you move right, the x coordinate increases; as you move
down, the y coordinate increases. The cell to the immediate right of the top-left
corner is (x=1,y=0). The upper-right corner has an x coordinate equal to the width of
the Canvas minus 1. Most phone screens have a width around 300 pixels, but for the
sample shown here, the Width is 20, so the upper-right corner is the coordinate
(x=19,y=0).

You can change the appearance of the canvas in two ways: by painting on it, or by
placing and moving objects within it. This chapter focuses primarily on the latter, but
let’s first discuss how you “paint” and how to create animation by painting (this is also
the topic of the PaintPot app in Chapter 2).

274 Chapter 17: Creating Animated Apps

Chapter 17, Creating Animated Apps

Each cell of the Canvas holds a pixel defining the color that should appear there.
The Canvas component provides the Canvas.DrawLine and Canvas.DrawCircle blocks
for painting pixels. You first set the Canvas.PaintColor property to the color you want
and then call one of the Draw blocks to draw in that color. With DrawCircle, you can
paint circles of any radius, but if you set the radius to 1, as shown in Figure 17-2, you’ll
paint an individual pixel.

Figure 17-3. DrawCircle with a radius of 1 paints an individual pixel with each touch

App Inventor provides a palette of basic colors that you can use to paint pixels (or
other user interface components). You can access a wider range of colors by using the
color numbering scheme explained in the App Inventor documentation at http://
appinventor.mit.edu/explore/ai2/support/blocks/colors.html.

Besides painting individual pixels, you can also place Ball and ImageSprite
components on a Canvas. A sprite is a graphical object placed within a larger scene (in
App Inventor, the “scene” is a Canvas component). Both the Ball and ImageSprite
components are sprites; they are different only in appearance. A Ball is a circle that
has an appearance that can only be modified by changing its color or radius, whereas
an ImageSprite can take on any appearance, as defined by an image file. Balls and
ImageSprites can only be added within a Canvas; you can’t drag them into the user
interface outside of one.

275The Canvas Coordinate System

The Canvas Coordinate System

http://appinventor.mit.edu/explore/ai2/support/blocks/colors.html
http://appinventor.mit.edu/explore/ai2/support/blocks/colors.html

Animating Objects with Timer Events
One way to specify animation in App Inventor is to change an object in response to a
timer event. Most commonly, you’ll move sprites to different locations on the canvas
at set time intervals. Using timer events is the most common method of defining
those set time intervals. Later, we’ll also discuss an alternative method of
programming animation using the Speed and Heading properties of the ImageSprite
and Ball components.

Button clicks and other user-initiated events are simple to understand: the user
does something, and the app responds by performing some operations. Timer events
are different, though, because they aren’t triggered by the end user but instead by
the passing of time. You need to conceptualize the phone’s clock triggering events in
the app instead of a user doing something.

To define a timer event, you first drag a Clock component into your app within the
Component Designer. The Clock component has a TimerInterval property associated
with it. The interval is defined in milliseconds (1/1,000 of a second). If you set the
TimerInterval to 500, that means a timer event will be triggered every half-second.
The smaller the TimerInterval, the faster the frame-rate of the animation.

After adding a Clock and setting a TimerInterval in the Designer, you can drag out
a Clock.Timer event in the Blocks Editor. You can put any blocks you like in this event,
and they’ll be performed every interval.

Creating Movement
To show a sprite moving over time, you’ll use the MoveTo function found in both the
ImageSprite and Ball components. For example, to move a ball horizontally across
the screen, you’d use blocks like those in Figure 17-3.

Figure 17-4. Moving the ball horizontally across the screen

MoveTo moves an object to an absolute location on the canvas, not a relative
amount. So, to move an object some amount, you set the MoveTo arguments to the

276 Chapter 17: Creating Animated Apps

Chapter 17, Creating Animated Apps

object’s current location plus an offset. Because we’re moving horizontally, the x
argument is set to the current x location (Ball1.X) plus the offset 20, whereas the y
argument is set to stay at its current setting (Ball1.Y).

To move an object down, you’d modify just the Ball1.Y coordinate and leave
Ball1.X the same. If you wanted to move the ball diagonally, you’d add an offset to
both the x and y coordinates, as shown in Figure 17-4.

Figure 17-5. Offsetting both the x and y coordinates to move the ball diagonally

Speed
How fast is the ball moving in the preceding example? The speed depends on both
the settings you provide for the TimerInterval property of Clock1 and the parameters
you specify in the MoveTo function. If the Clock.TimerInterval is set to 1,000
milliseconds, this means that a Clock1.Timer event will be triggered every second. For
the horizontal example shown in Figure 17-3, the ball will move 20 pixels per second.

But a TimerInterval of 1,000 milliseconds doesn’t provide very smooth animation;
the ball will only move once per second, which will appear jerky. To achieve smoother
movement, you need a shorter interval. If the TimerInterval were instead set to 100
milliseconds, the ball would move 20 pixels every tenth of a second, or 200 pixels per
second—a rate that will appear much smoother.

Collision Detection
To create games and other animated apps, you need more complex functionality than
just movement. Fortunately, App Inventor provides some high-level blocks for dealing
with animation events such as an object reaching the screen’s edge or two objects
colliding.

In this context, high-level block means that App Inventor takes care of the lower-
level details of determining when an event such as a collision occurs. You could check
for these occurrences manually by checking sprite and canvas properties within
Clock.Timer events. This level of programming requires some fairly complex logic,

277Speed

Speed

however. Fortunately, App Inventor provides them for you, and it’s a good thing that it
does because these events are common to many games and other apps.

EdgeReached
Consider again the animation in Figure 17-4, in which the object is moving diagonally
from the upper left to the lower right of the canvas. As programmed, the ball would
move diagonally and then stop when it reached the right or bottom edge of the
canvas (the system won’t move an object past the canvas boundaries).

If you instead wanted the object to reappear at the upper-left corner each time it
reached the bottom or right edge, you could define a response to the
Ball.EdgeReached event similar to that shown in Figure 17-5.

Figure 17-6. Making the ball reappear in the upper-left corner when it reaches an edge

EdgeReached is triggered when a ball or image sprite hits any edge of a canvas. This
event handler, combined with the diagonal movement specified with the previously
described timer event (Figure 17-4), causes the ball to move diagonally from upper left
to lower right, pop back up to the upper left when it reaches an edge, and then do it
all over again, forever (or until the app tells it otherwise).

For this example, we didn’t distinguish between which edge was hit. The
EdgeReached event does have a parameter, edge, which specifies the particular edge
by using the following code:

• North = 1

• Northeast = 2

• East = 3

• Southeast = 4

• South = –1

• Southwest = –2

278 Chapter 17: Creating Animated Apps

Chapter 17, Creating Animated Apps

• West = –3

• Northwest = –4

CollidingWith and NoLongerCollidingWith
Games and other animated apps often rely on activity occurring when two or more
objects collide (e.g., a bat hitting a ball).

Consider a game, for instance, in which an object changes colors and plays an
explosion sound when it hits another object. Figure 17-6 shows the blocks for such an
event handler.

Figure 17-7. Making the ball change color and play an explosion sound when it hits
another object

NoLongerCollidingWith provides the opposite event of CollidedWith. It is
triggered only when two objects have come together and then separated. So, for your
game, you might include the blocks depicted in Figure 17-7.

Figure 17-8. Changing the color back and stopping the explosion noise when the
objects separate

Note that both CollidedWith and NoLongerCollidingWith have an argument,
other, which specifies the particular object with which you collided (or from which
you separated). This allows you to perform operations only when the object (e.g.,
Ball1) interacts with a particular other object, as shown in Figure 17-8.

279CollidingWith and NoLongerCollidingWith

CollidingWith and NoLongerCollidingWith

Figure 17-9. Only perform the response if Ball1 hit ImageSprite1

The ImageSprite1 block is one we haven’t yet discussed. This block refers to the
component as a whole, not a particular property of the component. When you need
to compare components (e.g., to know which ones have collided), you use this block.
Each component has such a block in its drawer, and the block has the same name as
the component.

Interactive Animation
In the animated behaviors we’ve discussed so far, the end user isn’t involved. Games
are interactive, of course, with the end user playing a central role. Often, the end user
controls the speed or direction of an object with buttons or other user interface
objects.

As an example, let’s update the diagonal animation by giving the user the ability to
stop and start the diagonal movement. You can do this by programming a
Button.Click event handler to disable and re-enable the timer event of the clock
component.

By default, the Clock component’s timerEnabled property is checked. You can
disable it dynamically by setting it to false in an event handler. The event handler in
Figure 17-9, for example, would stop the activity of a Clock timer on the first click.

Figure 17-10. Stopping the timer the first time the button is clicked

After the Clock1.TimerEnabled property is set to false, the Clock1.Timer event will
no longer trigger, and the ball will stop moving.

280 Chapter 17: Creating Animated Apps

Chapter 17, Creating Animated Apps

Of course, stopping the movement on the first click isn’t too interesting. Instead,
you could “toggle” the movement of the ball by adding an if else in the event
handler that either enables or disables the timer, as demonstrated in Figure 17-10.

This event handler stops the timer on first click and resets the button so that it
displays “Start” instead of “Stop.” The second time the user clicks the button, the
TimerEnabled is false, so the “else” part is executed. In this case, the timer is enabled,
which gets the object moving again, and the button text is switched back to “Stop.”
For more information about ifelse blocks, see Chapter 18, and for examples of
interactive animations that use the orientation sensor, see Chapter 5 and Chapter 23.

Figure 17-11. Adding an if else so that clicking the button starts and stops the
movement of the ball

Specifying Sprite Animation Without a Clock Timer
The animation samples described so far use a Clock component and specify that an
object should move each time the Clock.Timer event is triggered. The Clock.Timer
event scheme is the most general method of specifying animation. Beyond simply
moving an object, you could also have it change an object’s color over time, change
some text (to appear as though the app is typing), or have the app speak words at a
certain pace.

If you only want to move objects, App Inventor provides an alternative that doesn’t
require the use of a Clock component. As you might have noticed, the ImageSprite
and Ball components have properties for Heading, Speed, and Interval. Instead of
defining a Clock.Timer event handler, you can set these properties in the Component
Designer or Blocks Editor to control how a sprite moves.

To illustrate, let’s reconsider the example that moved a ball diagonally. The Heading
property of a sprite or ball has a range of 360 degrees, as illustrated in Figure 17-11.

281Specifying Sprite Animation Without a Clock Timer

Specifying Sprite Animation Without a Clock Timer

Figure 17-12. The Heading property has a range of 360 degrees

If you set the Heading to 0, the ball will move left to right. If you set it to 90, it will
move bottom to top. If you set it to 180, it will move right to left. If you set it to 270, it
will move top to bottom. And if you set it to 315, the ball will move from upper left to
lower right.

To cause an object to move, you also need to set the Speed property to a value
other than 0. The speed the object moves is actually determined by the Speed and
Interval properties together. The Speed property is the distance, in pixels, that the
object will move each Interval.

To try out these properties, create a test app with a Canvas and Ball and connect
your device or emulator for live testing. Then, modify the Heading, Speed, and
Interval properties of the ball to see how they work.

For instance, suppose that you wanted to move a ball back and forth from the
upper left to the lower right of the canvas. In the Designer, you might initialize the
ball’s Speed to 5 and Interval to 100, and then set the Heading property to 315. You’d
then add the Ball1.EdgeReached event handler, which you can see in Figure 17-12, to
change the ball’s direction when it reaches either edge.

282 Chapter 17: Creating Animated Apps

Chapter 17, Creating Animated Apps

Figure 17-13. Changing the ball’s direction when it reaches either edge

Summary
Using the Canvas component, you can define a sub-area of the device’s screen in
which objects can move around and interact. You can put only two types of
components within a Canvas: ImageSprites and Balls.

Animation is an object moving or otherwise transforming over time. You can
program animation, including movement and other graphical transformations, with
the Clock component’s Timer event. If you just want to move objects, you can use an
alternative method based on the Heading, Speed, and Interval properties internal to
ImageSprite and Ball components.

With either method, you can also take advantage of high-level functionality for
handling events that handle collisions.

283Summary

Summary

	Creating Animated Apps
	Adding a Canvas Component to Your App
	The Canvas Coordinate System
	Animating Objects with Timer Events
	Creating Movement
	Speed
	Collision Detection
	EdgeReached
	CollidingWith and NoLongerCollidingWith
	Interactive Animation
	Specifying Sprite Animation Without a Clock Timer
	Summary

