
Figure 16-1.

CHAPTER 16

Programming Your App’s Memory

Just as people need to remember things, so do
apps. This chapter examines how you can program
an app to remember information.

When someone tells you the phone number of a
pizza place, your brain stores it in a memory slot. If
someone calls out some numbers for you to add,
you store the numbers and intermediate results in
memory slots. In such cases, you are not fully
conscious of how your brain stores information or
recalls it.

An app has a memory, as well, but its inner workings are far less mysterious than those
of your brain. In this chapter, you’ll learn how to set up an app’s memory, how to store
information in it, and how to retrieve that information at a later time.

Named Memory Slots
An app’s memory consists of a set of named memory slots. Some of these memory
slots are created when you drag a component into your app; these slots are called
properties. You can also define named memory slots that are not associated with a
particular component; these are called variables. Whereas properties are typically
associated with what is visible in an app, variables can be thought of as the app’s
hidden “scratch” memory.

Properties
The user of an app can see visible components such as buttons, textboxes, and labels.
Internally, however, each component is completely defined by a set of properties. The
values stored in the memory slots of each property determine how the component
appears.

You set the values of properties directly in the Component Designer. For instance,
Figure 16-1 shows the panel for modifying the properties of a Canvas component.

Figure 16-2. You can set component properties in the Designer; you are setting the
initial values of the properties (they don’t show the current values as an app runs)

The Canvas component has numerous properties of various types. For instance, the
BackgroundColor and PaintColor are memory slots that hold a color. The
BackgroundImage holds a filename (kitty.png). The Visible property holds a Boolean

266 Chapter 16: Programming Your App’s Memory

Chapter 16, Programming Your App’s Memory

value (true or false, depending on whether the box is checked). The Width and Height
slots hold a number or a special designation (e.g., “Fill parent”).

When you set a property in the Component Designer, you are specifying the initial
value of the property—its value when the app first begins. Property values also can
be changed as the app runs, with blocks. Yet, the values shown in the Component
Designer, such as those in Figure 16-1, don’t change; these always show only the initial
values. This can be confusing when you test an app—the current value of the app’s
properties are not visible.

Defining Variables
Like properties, variables are named memory slots, but they are not associated with a
particular component. You define a variable when your app needs to remember
something that is not being stored within a component property. For example, a
game app might need to remember what level the user has attained. If the level
number were going to appear in a Label component, you might not need a variable,
because you could just store the level in the Text property of the Label component.
But if the level number is not something the user will see, you’d define a variable in
which to store it.

The Presidents Quiz (Chapter 8) is another example of an app that needs a variable.
In that app, only one question of the quiz should appear at a time in the user
interface, yet the quiz has many questions (most of which are kept hidden from the
user at anytime). Thus, you need to define a variable to store the list of questions.

Whereas properties are created automatically when you drag a component into
the Designer, variables are defined explicitly in the Blocks Editor by dragging out an
initialize global block. You can name the variable by clicking the text “name”
within the block, and you can specify an initial value for it by dragging out a number,
text, color, or make a list block and plugging it in. Here are the steps you’d follow to
create a variable called score with an initial value of 0:

1. In Built-in blocks, open the Variables drawer and drag out the initialize
global block.

2. Change the name of the variable by clicking the text “name” and typing
“score”.

3. From the Math drawer, drag out a number block and plug it into the open
socket of the variable definition to set the initial value.

267Defining Variables

Defining Variables

When you define a variable, you instruct the app to set up a named memory slot
for storing a value. These memory slots, as with properties, are not visible to the user
when the app runs.

The number block you plug in specifies the value that should be placed in the slot
when the app begins. Besides initializing with numbers or text, you can also initialize
the variable with a make a list or create empty list block. This informs the app that
the variable will store a list of memory slots instead of a single value. To learn more
about lists, see Chapter 19.

Setting and Getting a Variable
When you define a variable, App Inventor creates two blocks for it: set and get. You
can access these blocks by hovering over the variable name in the initialization block,
as shown in Figure 16-2.

Figure 16-3. The initialization block contains set and get blocks for that variable

The set global to block lets you modify the value stored in the variable. For
instance, the number block in Figure 16-3 places the value 5 in the variable score. The
term “global” in the set global score to block refers to the fact that the variable can
be used in all of the program’s event handlers and procedures. With the newest
version of App Inventor, you can also define variables that are “local” to a particular
procedure or event handler—that is, local variables can be used only by the
procedure or event with which they’re associated (more on this a little later in the
chapter).

Figure 16-4. Placing a number 5 into the variable score

You use the block labeled get global score to retrieve the value of a variable. For
instance, if you wanted to check if the value inside the memory slot was greater than

268 Chapter 16: Programming Your App’s Memory

Chapter 16, Programming Your App’s Memory

100, you’d plug the get global score block into an if test, as demonstrated in
Figure 16-4.

Figure 16-5. Using the global score block to get the value stored in the variable

Setting a Variable to an Expression
As you’ve seen, you can put simple values such as 5 into a variable, but often you’ll set
the variable to a more complex expression (expression is the computer-science term
for a formula). For example, when the user clicks Next to get to the next question in a
quiz app, you’ll need to set the currentQuestion variable to one more than its current
value. When someone loses ten points in a game app, you need to modify the score
variable to 10 less than its current value. In a game like MoleMash (Chapter 3), you
change the horizontal (x) location of the mole to a random position within a canvas.
You’ll build such expressions with a set of blocks that plug into a set global to block.

Incrementing a Variable
Perhaps the most common expression is for incrementing a variable, or setting a
variable based on its own current value. For instance, in a game, when a player scores
a point, the variable score can be incremented by 5. Figure 16-5 shows the blocks to
implement this behavior.

Figure 16-6. Incrementing the variable score by 5

If you can understand these kinds of blocks, you’re well on your way to becoming a
programmer. You read these blocks as “set the score to five more than it already is,”
which is another way to say increment your variable. The way it works is that the
blocks are interpreted inside out, not left to right. Thus, the innermost blocks—the
get global score and the number 5 block—are evaluated first. Then, the + block is
performed and the result is “set” into the variable score.

269Setting a Variable to an Expression

Setting a Variable to an Expression

Suppose that there were a 10 in the memory slot for score before these blocks; the
app would perform the following steps:

1. Retrieve the 10 from score’s memory slot (evaluate the get block).

2. Add 5 to it to get 15.

3. Place the result, 15, into score’s memory slot (performing the set).

Building Complex Expressions
In the Math drawer, App Inventor provides a wide range of mathematical functions
similar to those you’d find in a spreadsheet or calculator. There are arithmetic
operators (e.g., +,–,*,/), blocks for generating random values, and operators such as
sqrt, cosine, and sine.

You can use these blocks to build a complex expression and then plug them in as
the righthand-side expression of a set global to block. For example, to move an
image sprite to a random column within the bounds of a canvas, you’d configure an
expression consisting of a multiply (*) block, a subtract (–) block, a Canvas1.Width
property, an ImageSprite1.Width property, and a random fraction block, as illustrated
in Figure 16-6.

Figure 16-7. You can use Math blocks to build complex expressions like this one

As with the increment example in the previous section, the blocks are interpreted
by the app in an inside-out fashion. Suppose that the Canvas has a Width of 300 and
the ImageSprite has a Width of 50, the app would perform the following steps:

1. Retrieve the 300 and the 50 from the memory slots for Canvas1.Width and
ImageSprite.Width, respectively.

2. Subtract: 300 – 50 = 250.

3. Call the random fraction function to get a number between 0 and 1 (say, .5).

4. Multiply: 250 * .5 = 125.

5. Place the 125 into the memory slot for the ImageSprite1.X property.

270 Chapter 16: Programming Your App’s Memory

Chapter 16, Programming Your App’s Memory

Displaying Variables
When you modify a component property, as in the preceding example, the user
interface is directly affected. This is not true for variables; changing a variable has no
direct effect on the app’s appearance. If you just incremented a variable score but
didn’t modify the user interface in some other way, the user would never know there
was a change. It’s like the proverbial tree falling in the forest: if nobody was there to
hear it, did it really happen?

Sometimes, you do not want to immediately manifest a change to the user
interface when a variable changes. For instance, in a game you might track statistics
(e.g., missed shots) that will only appear when the game ends.

This is one of the advantages of storing data in a variable as opposed to a
component property: you can show just the data you want when you want to show it.
You can also separate the computational part of your app from the user interface,
making it easier to change that user interface later.

For example, with a game, you could store the score directly in a Label or in a
variable. If you store it in a Label, you’d increment the Label’s Text property when
points were scored, and the user would see the change directly. If you stored the
score in a variable and incremented the variable when points were scored, you’d need
to include blocks to also move the value of the variable into a label.

However, if you decided to change the app to display the score in a different
manner, perhaps with a slider, the variable solution would be easier to change. You
wouldn’t need to modify all the places that change the score; you’d only need to
modify the blocks that display the score.

Local Variables
The variables described in this chapter thus far are global variables and you define
them with an initialize global to block. The “global” refers to the fact that the
variable can be used in all event handlers and procedures. Such variables are said to
have global scope.

With the latest version of App Inventor, you can now also define local variables,
that is, variables whose use (scope) is restricted to a single event handler or procedure
(see Figure 16-7).

271Displaying Variables

Displaying Variables

Figure 16-8. The variable “total” is local; it can only be used in the SumButton.Click
event

If the variable is only needed in one place, it is a good idea to define it as a local, as
the variable “total” is in Figure 16-7. By doing so, you limit the dependencies in your
app and ensure that you won’t mistakenly modify a variable. Think of a local variable
like the private memory in your brain—you certainly don’t want other brains to have
access to it!

Summary
When an app is launched, it begins executing its operations and responding to events
that occur. When responding to events, the app sometimes needs to remember
things. For a game, this might be each player’s score or the direction in which an
object is moving.

Your app remembers things within component properties, but when you need
additional memory slots not associated with a component, you can define variables.
You can store values into a variable and retrieve the current value, just like you do
with properties.

As with property values, variable values are not visible to the end user. If you want
the end user to see the information stored in a variable, you add blocks that display
that information in a label or another user interface component.

272 Chapter 16: Programming Your App’s Memory

Chapter 16, Programming Your App’s Memory

	Programming Your App’s Memory
	Named Memory Slots
	Properties
	Defining Variables
	Setting and Getting a Variable
	Setting a Variable to an Expression
	Incrementing a Variable
	Building Complex Expressions
	Displaying Variables
	Local Variables
	Summary

